Agglomerative Hierarchical Clustering of Emotions in Speech Based on Subjective Relative Similarity
نویسندگان
چکیده
When we humans are asked whether or not the emotions in two speech samples are in the same category, the judgment depends on the size of the target category. Hierarchical clustering is a suitable technique for simulating such perceptions by humans of relative similarities of the emotions in speech. For better reflection of subjective similarities in clustering results, we have devised a method of hierarchical clustering that uses a new type of relative similarity data based on tagging the most similar pair in sets of three samples. This type of data allowed us to create a closed-loop algorithm for feature weight learning that uses the clustering performance as the objective function. When classifying the utterances of a specific sentence in Japanese recorded at a real call center, the method reduced the errors by 15.2%.
منابع مشابه
Document Retrieval using Hierarchical Agglomerative Clustering with Multi-view point Similarity Measure Based on Correlation: Performance Analysis
Clustering is one of the most interesting and important tool for research in data mining and other disciplines. The aim of clustering is to find the relationship among the data objects, and classify them into meaningful subgroups. The effectiveness of clustering algorithms depends on the appropriateness of the similarity measure between the data in which the similarity can be computed. This pap...
متن کاملA Relative Approach to Hierarchical Clustering
This paper presents a new approach to agglomerative hierarchical clustering. Classical hierarchical clustering algorithms are based on metrics which only consider the absolute distance between two clusters, merging the pair of clusters with highest absolute similarity. We propose a relative dissimilarity measure, which considers not only the distance between a pair of clusters, but also how dis...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملClustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering
Agglomerative hierarchical clustering becomes infeasible when applied to large datasets due to its O(N2) storage requirements. We present a multi-stage agglomerative hierarchical clustering (MAHC) approach aimed at large datasets of speech segments. The algorithm is based on an iterative divide-and-conquer strategy. The data is first split into independent subsets, each of which is clustered se...
متن کاملA robust stopping criterion for agglomerative hierarchical clustering in a speaker diarization system
Agglomerative hierarchical clustering (AHC) is an unsupervised classification strategy of merging the closest pair of clusters recursively, and has been widely used in speaker diarization systems to classify speech segments by speaker identity. The most critical part in AHC is how to automatically stop the recursive process at the point when clustering error rate reaches its lowest possible val...
متن کامل